234 research outputs found

    The history of WiMAX: a complete survey of the evolution in certification and standarization for IEEE 802.16 and WiMAX

    Get PDF
    Most researchers are familiar with the technical features of WiMAX technology but the evolution that WiMAX went through, in terms of standardization and certification, is missing and unknown to most people. Knowledge of this historical process would however aid to understand how WiMAX has become the widespread technology that it is today. Furthermore, it would give insight in the steps to undertake for anyone aiming at introducing a new wireless technology on a worldwide scale. Therefore, this article presents a survey on all relevant activities that took place within three important organizations: the 802.16 Working Group of the IEEE (Institute of Electrical and Electronics Engineers) for technology development and standardization, the WiMAX Forum for product certification and the ITU (International Telecommunication Union) for international recognition. An elaborated and comprehensive overview of all those activities is given, which reveals the importance of the willingness to innovate and to continuously incorporate new ideas in the IEEE standardization process and the importance of the WiMAX Forum certification label granting process to ensure interoperability. We also emphasize the steps that were taken in cooperating with the ITU to improve the international esteem of the technology. Finally, a WiMAX trend analysis is made. We showed how industry interest has fluctuated over time and quantified the evolution in WiMAX product certification and deployments. It is shown that most interest went to the 2.5 GHz and 3.5GHz frequencies, that most deployments are in geographic regions with a lot of developing countries and that the highest people coverage is achieved in Asia Pacific. This elaborated description of all standardization and certification activities, from the very start up to now, will make the reader comprehend how past and future steps are taken in the development process of new WiMAX features

    A Hybrid WDM/TDM PON architecture using wavelength selective switches

    Get PDF
    In this paper we propose some new hybrid WDM/TDM PON architectures that use wavelength selective switches at the remote node to improve flexibility, data security and power budget. We compare it with the existing WDM/TDM PONs in terms of cost and power budget

    Dynamic bandwidth allocation with optimal wavelength switching in TWDM-PONs

    Get PDF
    Time and wavelength division multiplexed passive optical networks (TWDM-PONs) have been widely considered as one of the next evolutionary steps of optical access networks. A variety of algorithms exists that explore the problem of scheduling and wavelength assignment in TWDM-PONs. These algorithms, however, allow unlimited switching of wavelengths. In reality, wavelength switching increases guard bands due to the tuning and the switching time of components, limiting channel utilization and increasing packet delays. We propose a novel dynamic bandwidth allocation (DBA) algorithm for TWDM-PON that minimizes the performance degradation due to excessive wavelength switching

    Designing energy-efficient wireless access networks: LTE and LTE-advanced

    Get PDF
    As large energy consumers, base stations need energy-efficient wireless access networks. This article compares the design of Long-Term Evolution (LTE) networks to energy-efficient LTE-Advanced networks. LIE-Advanced introduces three new functionalities - carrier aggregation, heterogeneous networks, and extended multiple-input, multiple-output (MIMO) support. The authors develop a power consumption model for LIE and LIE-Advanced macrocell and femtocell base stations, along with an energy efficiency measure. They show that LIE-Advanced's carrier aggregation and MIMO improve networks' energy efficiency up to 400 and 450 percent, respectively

    Trade-off between end-to-end reliable and cost-effective TDMA/WDM passive optical networks

    Get PDF
    Hybrid TDMA/VVDM (TWDM) Passive Optical Network (PON) is a promising candidate for Next-Generation PON (NG-PON) solutions. We propose end-to end reliable architectures for business users and a cost-effective network for residential users. We evaluate the proposed reliable architectures in terms of protection coverage, connection availability, impact of failure (i.e. to avoid a huge number of end users being affected by any single failure) and cost in different populated scenarios
    corecore